Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
AbstractIntrinsically disordered proteins (IDPs) are a subset of proteins that lack stable secondary structure. Given their polymeric nature, previous mean-field approximations have been used to describe the statistical structure of IDPs. However, the amino-acid sequence heterogeneity and complex intermolecular interaction network have significantly impeded the ability to get proper approximations. One such case is the intrinsically disordered tail domain of neurofilament low (NFLt), which comprises a 50 residue-long uncharged domain followed by a 96 residue-long negatively charged domain. Here, we measure two NFLt variants to identify the impact of the NFLt two main subdomains on its complex interactions and statistical structure. Using synchrotron small-angle x-ray scattering, we find that the uncharged domain of the NFLt induces attractive interactions that cause it to self-assemble into star-like polymer brushes. On the other hand, when the uncharged domain is truncated, the remaining charged N-terminal domains remain isolated in solution with typical polyelectrolyte characteristics. We further discuss how competing long- and short-ranged interactions within the polymer brushes dominate their ensemble structure and, in turn, their implications on previously observed phenomena in NFL native and diseased states. Graphic abstractVisual schematic of the SAXS measurement results of the Neurofilament-low tail domain IDP (NFLt). NFLts assemble into star-like brushes through their hydrophobic N-terminal domains (marked in blue). In increasing salinity, brush height (h) is initially increased following a decrease while gaining additional tails to their assembly. Isolating the charged sub-domain of the NFLt (marked in red) results in isolated polyelectrolytesmore » « less
-
Short-range interactions and long-range contacts drive the 3D folding of structured proteins. The proteins’ structure has a direct impact on their biological function. However, nearly 40% of the eukaryotes proteome is composed of intrinsically disordered proteins (IDPs) and protein regions that fluctuate between ensembles of numerous conformations. Therefore, to understand their biological function, it is critical to depict how the structural ensemble statistics correlate to the IDPs’ amino acid sequence. Here, using small-angle X-ray scattering and time-resolved Förster resonance energy transfer (trFRET), we study the intramolecular structural heterogeneity of the neurofilament low intrinsically disordered tail domain (NFLt). Using theoretical results of polymer physics, we find that the Flory scaling exponent of NFLt subsegments correlates linearly with their net charge, ranging from statistics of ideal to self-avoiding chains. Surprisingly, measuring the same segments in the context of the whole NFLt protein, we find that regardless of the peptide sequence, the segments’ structural statistics are more expanded than when measured independently. Our findings show that while polymer physics can, to some level, relate the IDP’s sequence to its ensemble conformations, long-range contacts between distant amino acids play a crucial role in determining intramolecular structures. This emphasizes the necessity of advanced polymer theories to fully describe IDPs ensembles with the hope that it will allow us to model their biological function.more » « less
An official website of the United States government
